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An investigation 1s made of the stability of motion described by the system
of equations (0.4)

Zy'=—halYst X (@1, s Tpi Y1y - Y, ) Yy =AgZy Yy (21,05 Tpi Y1, -1y Y, T) (=4, ..o, P)

where X, and Y, are holomorphic functions of the varlabdles x,..., x,,
<vess ¥p - The expansion of these functions begins with terms not lower
han the aecond order. The coefficlents of the expansions of x, and Y,
are perlodic functions with the common real period w .,

In case P =1 and Aw/nm 1s irrational the problem on stabllity was
solved by Liapunov [1].

Below, the problem of Liapunov is solved for rational Jiw/m . The case
of canonicel system 1s investigated and the results are extended to systems
of higher order.

1. Investigation of Liapunov's problem for rational Aw/;r. Let us con-
sider the second order system

(.4 [+ ]
2=yt =N X, y,0, y=2a4 12 Dz, y,v) @.10)
R P} BT EA
where
X(l) — Z a(kn k,) (T) xhyh, 'Y(l) — 2 b(k,. ks) (,t)xkxyks
Kitha=L Ki-Hleg=l

% (2) = 3V (20,5 ™ 6os nt + 4,0 ™ sin nv)
n=0
o0

b(kn ki) (T) . E (bon(k" Ks) ¢oS nT + bl‘n(k" ks) sin n‘f)
n==0
and o &and g are positive integers.

Setting 71 = ¢t and passing to the variables 2z and n
z = E cos at - v sin at, y = Esinat — 7 cos at
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we obtain
e (o]
g. = 12 p(n (gr 1, t)s “’ == Z Q(l) (g, n, t) (1.2)
=2 I=2 ;
POE ) = XPcosat + YWsinar = Y, 4% " gkt
¥yt hy=l
Q(n (gs M, t) = X(l) sin af — Y(z) ¢oS of = Z B(kxka) (t) ghnh
Kitk=t
A(t) = A(t + 2n) B(t) = B (¢ + 2n)
Transforming Equation {1.2) and setting
N, N
o =84+ D)tk (f)Ehnk, = S ke (f) g
Feth=2 Fyt-Ka==2

where u(kuk) () ana ve®) (f) are perlodic functions of ¢ which have to
be defined, in consequence we obtain

[+ oo
. ! . !
x *’-:2 X9 (@1, yus ) Yy = 2 Yx”(xx, ¥, t) (1.3)
=2 I=2
where
ks, Ky ks, ki ] kiy Ky B, k
Xl(l) - 2 d( 3 ’)xl I " Yl() — 2 8( 1 ‘}&'31 o (1‘4)
R;+kg$l kr*-ngl
)
K Kok | (ko k  dulfe® (k) _ gl o (k) doto ™
a(kl :)=__A(x i)+cp(ll+ > B;z_an+‘pxz+ -

For values X+ kz= 2 , the functions @u¥) and k) are equal to
zero, and for the values k,+ k;> 2 , they are known functions wutkn ¥, pinkd
Ak Rteukd  gn which J+ k<2 .

Let us define the periodic functions uikukd and pléek) so that the quan-
tities a(fe®) and Buk) should be constant. For this it is necessary and

sufficlent to define these quantities by means of Equations (1.5)
an an
ks k) =2“_1~S [A00 W 4 ghokdy gy gl k) 21? S (B 4 gtk k) gy
¢ 0

Then the functions wulkuk) and kK w11l be defined as follows:
LTES S {aikn L LT S q)(ku ks)l dt

v(kxv k) S [B(kn ke B(kx: ks \p(h. kﬂ] dt

We thus have the result

zy = X2 (z1, 1) + X, @y, ) + ...+ X1(m+m'(xh )+
+ Xl(m+N+l) (xli 91, t) (1 '6)

g = Y™ @1, y0) + V™ (@, 90) o VY (2, 90 +
+ V™ (3, 4, )
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Here m > 2, m + N = N; and is equal to some arbitrary large number.
It is obvious that the problems on the stability with respect to the varia-
bles x,, y» and x and y are equivalent. In what follows the subscript
1 1in the system (1.6) will be omitted.

Hence, Liapunov's problem for rational Aw/yr can be reduced to the prob-
lem on the stabllity of the self-contained system with two zero réots i1f the
problem on the stability can be solved by means of a finite number of terms
on the right-hand sides of the system (1.6). This system was considered in
the papers [2] and [3].

In the above papers, there were formulated necessary and sufficient con-
ditions for the stability of the integrals of the system (1.6) in the sim-
plest case when the problem 1s solved by forms of the mth order.

Let us formulate these conditions. If the forms X and Y™ are
such that Equation
has real solutlons
agx + by =0 (k=1,...p) p<<m-+1
and if at least on one straight line gzx + by = 0 the form
RO = zX ™ + yY(m)

can take on positive values, then the unperturbed motion 1s unstable. If,
however, Ro< O on all straight lines then the motion is asymptotically
stable.

If Equation Fg= O has no real solutions different from x =y =« O,
the problem on the stability is solved by the sign of the expression
2

¥
. * Ro(cos 9, sin8)
g = FO(COSG, sin G)S m de
If ¢ < 0, the unperturbed motion is asymptotically stable; 1f, however,
g > 0, it 1is unstable.

The case ¢ = O , and the case when for Fg= O the form Ry, 18 negative
or may vanish on one or several straight lines, are indeterminate. The solu-
tion represents no difficulties when ¢ = O and 1t has been completely inves-
tigated in papers [2 and 3] .

Returning now to the system (1.6), and applying to it the formulated cri-
teria of stability, we see that Liapunov's problem is solved in two cases:

1) when the problem of stabllity 1s solved by forms of the mth order
independently of higher order forms,

2) when the form F, = 2Y(™ — yX™) 4s of a definite sign.

However, if the form F, 18 not of a definlte sign and 1f the form R, g O
when Fo,= 0 , then the problem on the stability depends on a study of forms
of higher order than the mth order.
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2. Stability criteria involving forms of the (m + 1) order. The vanish-
ing of the forms F, and R, on the straight lines g,z -+ byy = 0 can occur
only when the forms X( and Y have the common factor axx -+ byy.
Hence, in the indeterminste case Fo,= O and R € O , these forms can be

expressed in the form "

X =] (e + by Xm0

J L
g
(m) __ ) vi v (m-k)
YO =] (@r 40 Y 4 vy =k 2.1)
job
Here, XK and YU'® gare forms of order {m — %) and they do not have
common factors of the type ax + by .

The functions F, and R, will have the from
P

Vs p N
Fo=ll G+ 09" Prte ). Ro=11 (a4 09)Rer(z, ) 2.2)
1= j=1
F—k — _Ty(m—k)__ yx(m—k), Ry — zX(m-—k) + yY(m-k)

If the common real roots of Equations X (1, %) =0 anda Y™ (1,%) =0
are denoted by x,,..., »n, , then the common factors a,x + b,y will have
the form y + %jz, (x; = — ajl b;).

Let us first study the system (1.6) assuming that in {2.1)
vi=ve=...=v%=1,  Fy)+£0  (G=1...p

We construct for each straight line — y + »xy,x = O the function
©. = Y7, y) X "z, ) — X0 (3, y) Y (2, y) 5.3
i zy(m—k)___yx(m-k) - (2.3)

The conditions of stability can be tormulated in terms of order (m + 1)
in the following way.

If on at least one of the straight lines y +xz =0 (/=1,..., p)
the function ¢, takes on a positive value, then the unperturbed motion 1s
unstable.

If, however, ¢,< 0 on all straight lines then the unperturbed motion is
asymptotically stable.

let us assume that ¢ > 0 . Expressing the system (1.6) in the form
= (—y + %) XV L X 4
¥ = (—y+x) Y™ L Y04
and setting y;,= ~y + x,x , we have
2 =y X" (@ g0 + X7 @ )+
Y1=nY" @, )+ Y™ @, ) ... (2.4)
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m+l m+-1 (2.4)
X(m+l) 2 A(m+l) m+l—- hy k Y('Mrl) z B(m+l) m+l- hy k cont.
k=0 k=0
Almen (=D EXTI A, )
ok - k! dKlk
B(m”) (_1)k+1 grY (m+) “, %1) o de(m”)(i,ul) Ie 119 )
o+ 2 dna* YT ok ¢=—t12...

We note that
B(m n_ [Y(m’l) (1 %) — %IX(WI)(1- %1)] #___O
Let us transform the system (2.4) by setting
(m-1) (m-1)
T =x—wy, W=Ax ' [Bsy

As a result we obtain
2 =y X (4, y1) + X7 (@0, 1) +
yi =y V" (21, 1) + Y @) - (2.5)
Xgmm _ Z A(m+l) mil- ky1 , Y£m+t) _ 2 Bgtmmxinﬂ-kyi:

o _ 1 [d"X?“*” W _ gy (m (u,i)] g _ 4 801

g =] — _— g = — ———————
- q! dpd dpd T dpt?

We note that

(m+1) (m-1) -
Ay =@, (1, »y), By = — F_ (1, %), A =0 .
Without restricting the generality of the problem, one may set Bf)m” =0

for £ =1,..., ¥ . If these coefficients are not zero, one can make them
zero for £ € ¥ , by a change of variables

Y=z az® 4 ... ainV

and the proper choice of the numbers a4gz,..., ay . During this transforma-
tion the coefficients of the forms Xl(""l) and X(lm“) will not change. The

serles Ui (2) = a2 + 572 4- . . (2.6)

will satisfy formally the equation derived from the system (2.5) by elimina-
ting the time ¢t . These series are usually divergent.

As a consequence of the transformation, the system (1.6) takes on the form

xl =z2(A (m-1) m2+ + A (m 1) m~)+Ao(m+1)xlm+1+ .

o m+l
. + Angr;u) m+i +2 Z H (m+l) m+l k k (2.7)
1=2 k=0 +l
o m
7 = Z(B (m- 1) m 1 + + B (m-1) m- 1) + 2 Z Ek(m-pz)xlmu-kzk
l=1 k=0

For this system one can construct functions V¥V and W which satisfy the
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theorem of Chetaev [4]. Let us set V = x,2+ 2°

. In the region x*—22> 0,
xy> 0 , we shall have V'> 0

For the function W 1n Chetaev's theorem, we choose the function
W o= z2F — 2% & > 2 The region ¥ > O 1s contained inside the region
yv'> 0 . It 1s easy to see that the sign of ¥’ on the boundary of the
reglon ¥ > O on which ¥ = 0 1is determined by the sign of the expression
'-'Zlﬂf“"zzxY”q’, whose sign is invariable if x,> O . Hence, the

unperturbed motion described by the system (1.6) 1s unstable when &> O .

Above we have consldered the straight line — y + »xyx = 0 . We can con-
clder any other straight line — y + x»,x = 0 in an analogous way.
Let us prove now that if Uy (r, y} <0 (j =1,..., p), on every line

@,x + D,y = O then the unperturbed motion is asymptotically stable.

Transforming the system {(1.6) to polar cocordinates, we obtain

1y
r* = rmR o [] (#5080 —sin®) 4 rmaR + .,

i=1

p
0 = rm1F_ [] (%;cos0 —sin®) + rmF; + . . . (2.8)
=1

Ry = X" (cos, sinB) cos 8 4+ Y™ (cos 6, sin6) sin B
(m+1) : (m+1) R . (l=—%k12...)

F,=Y (cosB, sin@) cos® — X (cosH, sinB)sinB
Let us first consider the case when FLk(l, ») has no real roots. Liapu-
nov's function which corresponds to the system (2.8) may be taken inthe form

[

V=rexp { %) (2.9)
0

if one defines the function ¢(8) by means of Equation

4
R+ 9F = —h(®) [] (%;c050 —sin6) (2.10)
=1
where r{a) 1s a bounded, continuous, positive and pericdie function of
8 with period 2 ; obviocusly, »{s) cannot vanish for any real valueof §

In order to insure the periodicity of (8} we must impose the following
condition on ko)

27 P 2,:
e i Ay (9) (0)
§ O h (6) jgl (%; 050 —sinB) df = § k(e

The derivative V’ will have the form

8 n
V' =r"exp S "} (8) b {_., h(0) H {%; cos 6 —sin6)* +

-+ r [F W1 —R. kFl—-FlhII(x cos@~—<m@)]~{
Fk J=1

._..,.:
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For values of ¢ different from the values 8,, which are determined by
Equations x; cos § — sin g = O , the derivative VU’ takes only negative
values. For the values § = §,, the sign of the second term, contained in the
square brackets, colncides with the sign of the expression

F_ R —R_,F, x{(me)y(m-k) __ y(m+1) y (m-k)

¥y T cos@ Y™K _ging x(m-k

which 1is negative by hypothesis. Therefore, V¥’ is a negative definite func~
tion of r for arbitrary values of § . This implies the asymptotic stabi-
lity of the unperturbed motion.

Let us suppose that Equation FLk(l, %) = 0 has real roots different from
the common real roots of X (1, %)=0 and Y™ (4, x) = 0. Let these roots
have the values y, (8 =1, ..., ¢).

Then Expression

P
Ro= R[] (%;c0s8 —sin8)
j=1
will be negative for values of § determined by Equations u,cos g— 8ing=o0,
In the opposite case we will have unstable integral curves,

Let us now determine the function (8) in the interval (0, 2n) , and,
hence for all real values of 8 , by means of Equation (2.10). We do this
in the following way: we set w = (0 1in the intervals

B, — & << 0 <0, +e&
For this it is sufficient to define h{g) by means of Equation

p
R.x=—h(®)]] (x;cos6—sin6)
j=1
Such a definition h(e) 1s possible because Ro< O in the intervals
By, —e<<O <0, +& On the function n(g) in the interval (0, 2n)
we Impeose the condition

$(0)do =0

Pt

which can always be satisfied if n{0) = n{2n) .

For such a cholice of the function ¢ , the derivative V’ will be
negative-definite for real ¢ . Therefore, the unperturbed motion is asymp~
totically stable,

Let us consider the case when v; > 1 {fj =1, ..., p}). This can occur
when Equations X (1 %) =0 and Y (1, %) =0 have common multiple
real roots. We shall give the conditions for stability in terms of forms
of the order m + 1 .

The unperturbed motion is asymptotically stable for arbltrary v, ,...,v,
if the forms (2.1) are such that:

1) the Equation F.,(1, x) = O has no roots equal to x,,..., », but
has at least one real root «°;
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2) the functions &,< O on all straight lines y —x;z (/=1, ... p).

The unperturbed motion 18 also asymptotically stable 1f the equation
F_,(1, ») = 0 has no real solution but there is among the numbers v,,...,v,
at least one odd number, and if hereby &,;< 0 on all lines y = x,x

If WVvis5..., W 8&re even numbers, and if Equation F_,(1, x) = O has no
real solutions, then the unperturbed motion will be asymptotically stable
when the inequality

& R_; (cos 9, sin 8)

F(cose,sine)s e B0 <0, y=xg
1s valid. ’

We note that in the case of even v,,..., v one may assume that the form
Roy(x,y) <0 for y = x°x .

The proof of these assertions 1s analogous to the one presented above,
except for the case when v,,..., \, are even and Equation FLk(l, x) =0
has no real roots. Let us investigate this case. We take the Liapunov func-
tion as before. The function ¢(6) i1s determined by Eguations

r
Ry +VF = —h(@) H (#;c080 —sin 6)?
i=1
The condition of periodicity of the function ¥(g) takes the form
2n

& R_, (6)
-—h () 1] (%;c080 —sinB)2dp = LA
\ 7 Jl_ll sin 6) § i B

This condition 1is always satlsfied with the corresponding cholce of
n(e) > 0 if 2 o
F_ks — R
-k
0
The rest of the proof 1s analogous to the case when vy, = vges .., = y=1 .,

Next, we consider the case @; > (0, vj >> 2. In the solving of this prob-
lem we 1limlt ourselves to the case of one multiple root x, (P = 1)

In this case the system (2.8) will have the form
r'=rm(xcos0—sinOy R_, 4+ r™1R; 4.
0" = r™1(x, c0s0 —sinO)F_, 4+ rmF; + .
Let us suppose that the mth order forms determine the nonasymptotlcally

stable integral curves and let us take the Lilapunov function in its earller
form (2.9). Let v, be an odd number. We determine the ¢(¢) by means of

Equation R_,, +-%F_,, =h (8) (x, cos @ — sin 6)
The Tunction h{g) > O 1is found from the condition of periodlcity of the

function ¥(¢) . Then when &, >0 , the derivative V' will be positive
definite which guarantees the instability of the unperturbed motion.

If v, 18 an even number and if Equation F., (1,%) =0 has no real
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roots, then when tb'l> C the unperturbed motion will be unstable if

¢ R_, (cos®, sin6)

F-v, (COS 9, sin 0)5 m dB > O
hy 1

The proof of this proposition is analogous to the one given above,

Following the arguments presented in Section 2, one can study the case
v; > 2 in greater detall, Because of the particular nature of such sys-
tems we shall not dwell on this any longer.

3. Stability ceriteris in terms of higher order forms, Let us consider
the unsettled case when &= O on the straight lines — y + xyx = 0 (J=1,..
«+., Py) and takes on negative values on such lines with (j o Pit 1,.00,P)
(\)1= vam ... = oy= 1) .

It 1s quite complicated to formulate the criteria of stability on the
basis of the structure of the right-hand sides of Equations (1.6). There-~
fore, in what follows, we shall give the formulations in reference to the
system (2.7).

We note that for any transformation y,;= — y + x,x we shall obtaln sys~
tems analogous to (2.7). Let us assume that in one of these systems $y= O,
while the first nonvanishing coefficient H{™" has an inlex £ = a; < ¥ .
We will prove that in case H{™%/ > 0 the unperturbed motion is unstable.
Let us take the Chetaev function in the form V = x1“+ 2 . The sign of its
derivative in the region — z? L z,2 > (, zy >0 when 2x = 3 + g,
1s determined by the sign of Expression Hgm”j)xin”j”, which is positive
when x;> O . Hence, ¥V’ will be positive in the selected region.

In the region where VV’> O we take the function W = — z% . g1

The derivative of thls function preserves an invariable sign when ¥ = O ,
This establishes the instability of the unperturbed motion.

If we find that the coefficients H{™®) < 0, on the lines —y+n,x = O

(/ =1,..., P) on which ¢;= 0 , then the unperturbed motion is asymptoti-~
cally stable. The proof of this proposition is basically the same as the
proof presented in Section 2, therefore we shall not give it here.

It may happen that, no matter how large ¥ may be, the nonvanishing
coefficients H((,m”) have superscripts with £ > ¥ . This case is essentially
a singular case, and 1f 1t is possible to establish this for some one of the
lines — y + w;x » O , then the series (2.6) will be convergent and it will
represent a root of Equation

yly(m—l) (z1, y1) + Yy (L) +...=0

With the substitution Y; =2 +C21° +-¢g21® + ...  the system (2.5)
can be reduced to the form

@ =z[ X"z, 2) + X ™ (21, 2) + X, (@1, 2) + .. ]
2 =2z[Y "V (@, 2) + ¥, (21, 2) + ¥ (21, 2) + ... ]
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This system can be investigated in an analogous way taking into account
that 2 = 0 18 & singular line.

We note that if the form F_, is of a definite sign, the integrals of this
‘system are always stable, but they are not asymptotically stable,

&, Investigstion of the case X{™ (1,%x) = O, YO (f,%,)=0
F(l,%2;) =0. Let us consider the case when the common real root of Equa-
tions X™ (1,%,) =0, Y™ (1, %)) =0 1s also a root of Equation
F.o(l,%) =0. This case, because of its particular nature, will not be
investigated in all of its details here. We shall restrict ourselves to the
assumption that the common real root of

XM, ) =0, Y™ w)=0, Fix(l,n)=0
is not a root of Equatlons
YO (4, x) — XM (1, %) =

. dy (™ (4, ax™n,
3MMWme@[ T m‘“]zo

We shall prove that the integrals of the system of equations (1.6) are
always unstable under these assumptions.

Setting #a™ — ¥ + x3x 1in the system, we obtain the system {2.%) 4in which
Bi’;‘"’ A% =L 0. Equation AP =0 may nold in case v, > 2.
Eliminating dt in the system (2.4), we obtain Equation

dy _ ylg(B'(lm-l)wm-z 4. +B‘S,,T"1”y m—2)+B (m+1)$rr»+1+~
dz n( A‘gm—n a4 A"”“”y R Al it 2™
By means of the substitution ¥, = [z{z) - k] £+ this equation can be
reduced to the form dz
T = =8z + 2q: (2, 2) + 2 qa (2, 2) (4.2)
if the number h is determined by means of Equation
[3/2*4.})"“1’ . B‘(lm*l)l hz — B‘ngl)

(4.1)

A real solution for h can be obtalned when the sigh of the difference
standing in the square brackets colncides with the sign of B(mﬂ’- This can
be accomplished for any system by repalecing x by — x 1in case m 1s even,
and by repalcing x by ~x and y by -~y 1if m 1is odd.

It is easy to show that Equation (4.2), with & not equal to & positive
integer, has the holomorphic integral

(o~ [oe]
z(x) = 2 Cyxk - z'h 2 Dyax¥ (4.3)
k=1, k=1
Substituting the value y, = [z (2) 4 k]l 72 in the first equation of the
system (2.4) we shall have

B _ 4 a4 v (, 2t (4.8
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If we select the number » so0 that A(‘B‘—”h is positive, then 1t follows
from (4.4) that the unperturbed motion is unstable. In case & is a posi-
tive integer the integral (4.3) 1s holomorphic with respect to x, xt and
x 1n x . The derivatlions are the same as before.

In conclusion we shall consider the case F; = (. This identity can
exist only when X(™ — aX03-D (g g) T = yXm™=N(z, y). If the form
Xm-u (x, _l/) can take on positive values then the unperturbed motion 1is
unstable since R = (22 + y°) XD (g, v,

Therefore, stability can exist when the form XD (x y) 1is negative-
definite, or if 1t 1s represented as

P
(m-1) L. 2V
X" (2, y) = — [ (@ + biy)™
i=1
This case has been treated by us already.
Ir XD (z,y) 1s negative-definite, then the unperturbed motion will
be asymptotically stable independently of any forms of higher order. For
this type of systems, Liapunov's function can be taken in the form V=x*+ }~.

The contents of Sections 2 to 4 solve Liapunov's problem in more general
cases.

5. Canonioal systems. As an application, let us investigate the oscill-
lations of a Hamlltonian system with the function

H = % (22 +y) + 5 (@002 4 azty | aldry? + a09y° +
+HY (z,y, 1) +...] (5.1)

where
a ki ks) — 2 (6ﬂ(kl, k) cos nt + Tn(h, k) gin nT), H(l) — Z alku kz)xk:ykz
ktHka=l1
Gg“k”, Tg“kﬁ are real constants.
Speclal cases of this problem were treated in the papers of Levi-Civita
[5], Siegel [6] and Merman [7].

A system of equations with Hamilton's function of the type (5.1) can be

represented in the form
OHW (z, y, 1)

2 = ay — a@ig? 2a1D7y — 3al08ly? — 3y .

" (z=p1) (5.2)
y’ = AZ + 3a(3,0)x2 + 2a(2.1)1~y + a(l,2)y2.+ 21_:[__((5;’_!./& + -

Transforming this system 1n accordance with Section 1, we obtain (5.3)
Ty =a®0 g2l al gy, oy L X3 (2, ) ... + x{" (z1 41 +
+ X (@ v 0 4
= ﬂtz.o) ot + 8" 2y, +ﬂ(o'2) i Y3 (2, ) .- v (z1, ¥) +
- YV (@, Y1, ) 4. ..
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The constants f»% ana Bkek (k Lk, = 2) will satisfy the conditions

D = — 220 (L) = 2p0:2) (5.4)
(2.0 =14 (_37(13,0) 4 3T§3'0) _ 37:(51.2) 4 ,],(11,2) _ 6(12’1) . 3(3;2'1) _ 36(10,3) + 36;0’3))
ﬁ(n,g) =1/ (— 36(13'0) +36§;3'0) _ 6(1,'2) _ 3&31.‘1) _ 7(12,1) _{__37:(’2,1) . 3,1,(10.3) _ 3,],%0,3))

3,0) (3v0) 1,2) 1,2) v 2,1 3 0,3 )
2,0) 3 (3,0) (3,0) (1,2) (1,2) (2,1) 2,1) 3 0,3) (073)
6( /8 ( 63 36[ - 61 63 — ]1 - I:(i - I(] i IJ )

in view of the canonical systems (5.2).

In accordance with the criteria of stability with respect to forms of the
mth order, the integrals of the system (5.3) for X! =YW =0(l>3) can
be stable, 1in general, if

1) otk b2 — Bk k) = O (k4 kg = 2)
2) the forms of the second order have a common factor of the form
ax + dy , and the form F,{(x, y) is of a definite sign.

In all other cases the motion is unstable. It is easy to prove that for

the canonical systems the second case can not occur because of conditions
ﬁ(l,l) = — 2020 and gLl — — 23(0,2)’

The first case zan arise when g > 3a or when the conditions (5.4) lead
to okuk) — Blkuk) — () for nonvanishing ﬁ(lk"k’), ik gk phg oy e )
In this case the problem of stability can be solved by means of forms of
higher order. Let us assume that the lowest forms, that are not identically
zero, are X and Y(), Then stability with respect to mth order forms

can occur only in two cases:
1) the form Ro= O when Fo(y, x) = 0 ;

2) the function Fy(x, y) is sign-definite, and
2

g = Fy(cosH, sin G)S %:%::%%dﬁ =0
0

The case R, < 0 with Fo(z,y) = 0 and the case g < 0 for the canon-
ical system, can not occur because it leads to asymptotically stable inte-
grals, which contradicts Liouville's theorem.

If, however, the form &R, with F, (x, y) = 0, takes on positive values,
and also if ¢ > O with a sign-definite Fo(x, y) , then the unperturbed
motion is unstable.

For the investigation of the cases 1 and 2 1t is necessary to consider
higher order forms. Let us consider forms of the m + 1 order.

Applying the stabllity criterion, one can prove that for canonical systems
in case 1, the stability 1s possible only when the functions &, vanish if
Fo(x, y) = 0 . In the opposite case we obtain only instability since the
case od asymptotic stability can not occur for canonical systems. One
reaches the same conclusion considering the case 2.
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Investigating forms of order higher than m+1 , for example forms of the
m+k order, we arrive at similar conclusions, i.e. we will obtain either
instablility or we get the indeterminate case when the problem of stability
1s not solved by forms of order m+xk . Thus, just as for rational 1\ 8o
also for irrational A , stabllity can occur orly in very speclal cases,

6., Systems of higher order, Let us consider the system (0.1) and let us

assume that all X, are irrational and that they do not satisfy any relations
of the form

n
D mhs=0 tor I [mg| <N (A)
s=1
where the m, are integers.

Setting z, =ua, 4 iy, z, =z, —iy,, We obtain

25" = ihZs 2 (21, ooy Zpy 21500y 2py T) zg = — ihgZs + Zg (21,-..12py 21y -.y3py T) (B.1)
Here, o0 . _ o )
Zy= N2z, Z,= 3 ZW0 s=1,...,p)
1=s2 1=

Z2* =AM ()" en ML g
- — - - Kk 2 53
Zpr =NVAM ()L P ™ML P

A¥* (1) = A** (v + 2n) (Frgeee Fhp+rd e+ np>2)

Here, and in the sequel, an asterisk indicates a superscript (x,,..., k,)
while two asterisks indicate the superscripts (x,...,

Passing to the variables ¢, and T,
CS = z& + 2“8“ (T) zlk’ . zpkp;}.ﬂ‘ A ;pnp
Es = ;s + 2;‘3‘* (x) P k... ;p kpﬁ“‘ rer zp'np

we determine the functions uX*(r1) and %#**(7) so that on the right-hand side

of the transformed system 1T does not appear explicitly in the 2¥ + 1
first forms.

Such a determination of the functions uX*(7) and u**(t) 1s always pos=-

sible, whereby these functions are continuous and periodic of period 2n
As a result we obtain

Kys Rasesn, By ).

(6.2)

.

gs. = ilsgs + gs 2 Cs* {gl: gl)k’ b @p, Zp}kp + Ps (Ch - {;p, glv ¢y Ep’ T)
kx+"'+kp<N

In this system the (¥ are constants and the P, holomorphic functions
of ¢, and . Whose expansions do not contain terms of order less than
2% + 2 . The coefficients of these expansions will be continuous and perio=-

gic functions in T of period 27 . The number N may be taken sufficiently
arge,

Setting L =&, +in, CHr=oar* 1 iB,*
N
we obtaln - _ A, +E, 2 a* (B2 4 md)f ... .2ty 2)% _
ficke - obhp>1 r P
N

- . 5
s k,+-~§k NS WM G2 P K Gy By, 1) (6.3)
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N
k
N = }‘sgs + gs 2 Bs* (512 + m‘)k‘ ‘e (gpﬂ + "pz) P4
Iytee 4k 21
~ P
k e
-+ s E aa* {§12 + 'fiiz)k' e (‘Epﬁ + ﬂp’) L Ls (‘31» LR gp} My - e 3 'ﬂp, t)
Bbe k21

where the X, and [, do not contaln terms of order less than 2¥ + 2 .
Setting E,=r,cos8,, n,=r.sinf, we obtain

. k
rg =r 3 arn. . ,-p2 Pt Ry(ry,...,7, 01,00, 0p, 7)
\ ’ (6.4)
. : 2k
rseg 32&,sf8—§—fs ng#r;ﬂ\x.“ ?‘p p+Fs(er" ';rpveh“‘)apsr)
C<hi+--+E, N s=1...,p)

In those cases when the problem of stablility is solved by a finite number
of terms on the right-hand parts of Equations %6.4), the investigation of
the stablility of 1ts integrals reduces to the problem on the stability of
systems of the pPth order with p zero roots, which is represented by the
first group of equations of this system. This case was treated in [8],

Let us now consider the case of rational Az =0 /B (@ Bsy are positive
integers). Let the number 8 be the lowest multiple of all the g,, . Set~
ting T = gt , and pessing to the variables £, and n, by means of Formulas

z, =, cosat -+ sinat, y, =Esingt—nocosat (o =B, /B,)
we obtain

{6.5)
fe o] o0
Es' = 2 Pa(n (Ela“‘:gp; Ny s i), 'ﬂs' = E Qs(” (gls-'wgﬁ"; Ty My t) (3=ir revy p)
1=2 1=2
Performing the transformation we get (6.6)

k n
Ty =F, -k Dur g, M By P, P
k _om s )
ysl«.-:ns_;.zvau (t) B e By P, PRkt bt e + 1, < N)
Let us determine the functions yu, and v, so that in the transformed

system the ¥ first forms should have constant coefficlents.

Such a determination of the functions y, and v, is always possible., As
a result we obtain

xs; = Xs(lm) (2?11, s Y i Y | SRR Xs(1m+N) (xn, . xpl’ ‘yll""’ypl) -+
XA (g @ Yy Yppp B A
931. = Ys(lm} (@3gs - Fpplypye gy )+ o0 Ys(;M_N) (Ty0s s Tpgs Yppoeeos ypot+
, +ymtNtug L, Tpps Yap s Upy 1 O o
(m>2s=1,...,p) 6.7)

Thus the investigation of the system (6.1) for rational ), can be reduced
to systems of 2P equations with 2P zero roots; whereby the forms x(!
and Yé’l) for | < m-+ N can have any constant coefficlents. 81

Note .1 . If the system (6.1) has u pairs of pure imaginary roots
with irrational A, and v gairs with rational ones {u + v = p) then, com-
b:.nmg the transformations {6.2) and {6.6), 1t is always possible to trans-
form this system to a system of order u + 2y with u + 2y zero roots if
the irrational 1, satiafy the condition (A).

Note 2 . Lispunov's problem, and the problem of stabllity in the
case of P pairs of pure imaginary roots are considered here only for the



Problem of stability of motion in critical cases 1253

case of critical varilables. It is easy to prove that the results remain
valid also for the more general case when the system (6.1) has alsc n roots
with negative real parts in addition to p pairs of pure imaginary roots.

We note that the problem of stabllity in case of irrational 1\, permits
considerable simplification in the general case, and that it can be reduced,
when p = 1 , to the investigation of one equation which is obtained from
(6.3) by the change of variables £, = rcosf, m; = rsin0. This equation has
the form ,r =™ ,™ 4 . The number o™ corresponds to a number ¢
which appears in Llapunov's method [1]. When the 1, are rational, the prob-
lem becomes considerably more complicated. The complications do not disap-~
pear (as can be seen in Sections 2 to 4) even if P = 1 since the investi-
gation of the system (1.6) involves many difficulties.

While it was possible to formulate necessary and sufficient conditions
for stability (in terms of forms of the second order) for second order sys~
tems (1.6) and while we could analyze mare general cases for stability with
respect to forms of higher order, it 1s not possible to find such general
condition for stability or instability for systems of the type (6.7).

One criterion of instabllity with respect to mth order forms for the
system (6.7) was obtained by the author in the paper [8]. We shall give it
here.

If the system of equations .
2y =X ™ (@, . xn) + XS (@, ) e (s=1,2,...,n) (6.8)

1s such that the forms (m) (m)
m m
Fy=x.X, —z, Xy

with any fixed k% and for s=1,2...k—1,k+1,... have real solu-
tions different from gz =gz, =...= z,=0, and if the form

n
R= Y 2, XM (zy,.. ., 2,)
s=1
with F,,= O , can take on positive values, then the unperturbed motion is
unstable.

Therefore, in the presence of real roots of the system of equations
F, = 0 , stability can occur only when for all values of x,,..., x,, satis-
fying the condition F,,= O , the expression R < 0.

In case the A, are irrational, the system (6.1) can be reduced to the
system (6.4) in which the forms ,X?“ are such that the equations F, = 0

take on the form
Fsk =TTy (Rs(m b Rk(m 1)) =0

(m—1) _ »p2k; | 2K

R, = Dt rifp (2% 4 2kg+ -+ 2k, =m —1)

System of these equations always has real solutions different from
r1= "‘2- ce = 7"- 0 .

In case the 1\, are rational, there will always exist such solutions when
m 1s even. If m 1s odd, the system of equations F, ,= O may have no
real solutions besldes x;= x,= ... = x,= 0 ,

From the given criterion for instability with respect to mth order forms
it follows that the forms F,, and R play a very important role in problems
of stabllity of the integrals of the system (6 8).

Therefore, 1t is of interest to obtain a new form of the equations of the
perturbed motion whose right-hand sides would contain the forms F,, and &
directly. For this purpose let us transform the system (6.8) by setting
x,=ry, (e = 1,2,..., n). Suppose that y,%+...+ y,°= 1. Then x;?+...+
+ X,

Differentiating the last equation with respect to ¢ and determining the
derivatives of ¥ ,..., Y. With respect to ¢t by means of (6.8), we obtain
a new system of the form
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dr
a5 =" Ro 4 "Ry
Yy m F (o) (0} {0) m ‘ (v
2 =TT F Y+ aF O by FLO) ™ Sy Pl
k=<1
(s=1,..., n) (6.9)
n n
MNy2=1, R= > yX™D(y,y....y) (=012 ...)
s=1 s=1
. 1
Fl =g X "0,y — 0 X ™ g,y
We note that
) — 0y [
Fss =0, Fsk”__pks()
Let us now rewrite the first group of Equations (6.4) in the form
ry = rsRs(mm” -+ rsRs(m—*—l) + .. <Rs”) = us*rlzkx ves rpzkp
Dydeee s Bh ] )
Setting »

P
=Ty, zs=ys2’ p:rZ: Z rs2, m=2k+1
s=1
and taking into account that

F o =rgry (Ry— Ry) = roroR

HRox
we obtain

dp

o= 20"1Ry (21, . . ., 2 »)+ 2052R, (21, . ., zp) 4 -

d

s=1 s P
e 2y (6.10)
2t =¥, (@R, Y + RO 4 s RO (Zz+ +2p i)

Liapunov's function for the system (6.10) may be taken in the form
V = pe-Nu where yu 1s a continuous bounded function of 2,,..., 7, . The
derivative of this function with respect to ¢t will have the form

V’mZPkHE'Nu{[ NZ( -~ )z 2 R0 }“l‘
+p[1?1—1v2(6“ a“)szﬁsk( )]+ }

because of Equations (6.10).
If 1t should happen that the function u
Bu

can be found from Equations

0)
5};’" Rsl(c Py

where P,, are positive continuous bounded functionas different from zero or

constants, then
Ve 2?k+1e—Nu [Ro— szsk (Rsk(ﬂ))z 22l + -

Let us assume that such a function y has been found.

Then the neces-
sary conditions rﬂ'

asymptotic stability with respect to the mth order forms
(Ro< 0 with F_'% = () are also sufficient. Let us confine ourselves to
the umplest casg P =2, i.e. when (6.1) is a system of the fourth order.

In this case the function u 1s determined by Equation

ou _ Ou = Rn®, RO = Z gk Kabz KagyHe

ke=k k
ot T : { 1+t Fa)
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The function u can be taken in the form

we= 3 AER Tk =k k)
k41

Making the substitution, we determine all the coefficlents 4v®)  ip
terms of the coefficlents ik ki)

Returning to the derivative v’ whivh, for P = 2 , has the form
V=21 NU [Ry — N (R1g{®)2 2120] + + -«

we come to the conclusion that if the form Re<0 for Fy= zizgﬂgg) =0, then
the unperturbed motion is asymptotically stable. This result was obtained
in [B8]. Considering forms of higher order and selecting the function

V=pe N gt 4. 4 p%e™
one can obtain criteria of stability in forms of order higher than the mth,
We shall, however, not concern ourselves with these questions. We note that
the new form of the equations of the unperturbed motion of the kind (6.9&,
which makes 1t easier to construct Liapunov's functions for the system (6.8),
does not eliminate all difficulties related to thelr constructions if ~
In these cases one can encounter quite serious difficulties.

7. Canonical systems., Suppose that the system of equations {6.7) is
obteined from the system (0.13 under the assumption that its Hamiltonian
function has the form

P o
o, 1
H= 3 o (28 U 2 HY @,y i ey yp, 1) (7.1)
g=1 S 00 =3
Here, HO =Za** ()&, ft... xpkpylnt cas ypnp
n=0

o0
a** () = 3 (8,** cos nt + 1,** sin n1)

n=0
(kl—f-kz-i-"'+kp+n1+”2‘f‘“'+”p:2)

In splite of the special nature of the right-hand sides of the obtained
system, the investigation of this system is very difficult. The fact 1is that
the canonical systems belong to those special systems for which the stability
problem can not be solved by a finite number of forms of the right-hand sides
of the systems (6.4) and (6.7). Even though these systems contain ¥ first
forme with coefflclents independent of time, this circumstance does not sim~
plify the study of the problem because these forms may determine elther
instabllity or nonasymptotic stability. If however, one sets ¥ = = ;, then
one can obtain a self-contained system for forms of any order, and the solu~
tion of the problem presents no such difficulties if the transformation
serles {6.2) and (6.6) are convergent. But these series will diverge in
general, and the investigation of their convergence properties presents great
difficulties even when p = 1 .

Avolding the difficulties connected with the investigation of the stabi-
11ty of these systems, let us consider those canonical systems in which the
instability of the unperturbed motlion can be revealed by a consideration of
the ¥ first forms of the right-hand sides of the system of the perturbed
motion. Hereby it 1s necessary to restrict the investigation to rational 1},
since for irratlional 1, the unperturbed motion will be stadble noc matter how
large the finite number ¥ needs to be chosen.

Let us assume that as & result of the transformation the powest forms X{!
and }jn' which appear in the system (6.7) have the index £ = 2 ,

We consider the system of algebralc equations (7.2)
X D00 o Aoy b A o v o A B g v o B) =0 (Mg =1 /zp, Py =19,/ 7y)

Yo® oo o b b g oo o g BBy oo o ) =0 (s=1,...,p)
and the system of equations



1256 G.V. Kamenkov

s (2) ‘ . -
X0, 7»,), ST L T TP pp) =0 (=0, Khs=y,y,) (7.3)

2)
Ys( (;"1‘ e ;“p! Hy, ooy p‘}{_y 1, p‘k'rl' e p‘p) =0 (S =1, r)

For each value of %k we shall have two systems of equations of order 2p
with 2p — 1 unknowns. If for any fixed index %k at least one of these
aystems does not have real roots, then the unperturbed motlon, determined by
Hamilton's function (7.1), is unstabdble.

If these systems have common roots for arbitrary values of % , but the
equations F,,» 0 , constructed for the system (6.7), have roots different
from the common roots of the system (7.2) and (7.3;, then the unperturbed
motion is also unstable.

If it happens that the forms Xs'! and Y‘(g“ for 1 =12,3,...,m— 1 vanish
identically, and the forms Xy”’and YU are different from zero, then,
applying the criteris of instability to this kind of systems, we obtain
analogous results for even m

If m 1is odd, one has to consider & system of 2p-— 1 algebralc equs~-
tions F,,= O in 2p - 1 unknowns. If it happens that for one % the
system of equations has real solutions, and that for F,,» O the form

Ro=Zz X /™ L 32yy ™

can take on positive values, then the unperturbed motion 1s unstable.
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