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An lnveatlgatlon Is made of the stability of motion described by the system 
of equatlone (04 

% *= -k/,+x, h .**, ZPi Yl, *a., yp, T), y.y’=I+,+Y, @l ,...I zp; 311, ***, YpP, r)@=i, . . . . p) 

where X, and Y, are holomorphlc function6 of the variables x1,..., x,, 

k6’~t”ae~ond order. 
The expansion of these functlone begins with terms not lower 

The coefficients of the expansions of X, and Y, 
are periodic functions with the connnon real period u) . 

In case P - 1 and AUJ/V Is Irrational the problem on stability wae. 
solved by Llapunov [l]. 

Below, the problem of Llapunov la solved for rational Am/u . The ease 
of canonical ayatem Is lnveetlgated and the reaulte are extended to eystems 
of higher order. 

1. Iavesb*tloa ol Uapuaovto problem ?OF ~a*ioaal h/n. Let UB con- 

sider the second order system 

. 
2 =-$y+ $$j x(z)(z,y,z), 

I=¶ 
where 

k,+ks=Z k,+ka==~ 

Tl=O 

and a and 6 are positive Integers. 

Setting T = pt and passing to the variables c and TJ 

x = E co.3 at + q sin at, y = E sin at - q cos at 

1239 



1240 O.V. Kemrakov 

we obtain 

P(I) (6, q, t) = X’l’ cos crt + Y(l) sin at = 2 d(kt* “‘(t)Eklqk* 
k,+kt=f 

p (g, ?j, t) = xfl) sin at - Yc’) cos at = 2 B(kakz) (t) tklqkx 
k,+k,=l 

A (t) = A (t + 2%) B(f) = B(t + 24 

k,+ks=a kr-f-kpa 

where U(kl*kat (t) and V (kl*kS) (t) are periodic functions of t which ham to 

be defined, in consequence we obtain 
CO CO 

a%~ k:) = AtkIt kd + #b, t) I 

&krt kd , dt P (ktr kz) =B’h”,“’ 
+9 

&,tkr, W #a, ks) + 
dt 

For values k,+ kl- 2 , the functions #k*‘t,ka) and +Ckl-kd are equal to 

zero, and for the values k,+ ka> 2 , they are known functions u(krf k), y(ksaks), 

d@~*k~), ~~kl*ks~, in which k,+ ka < d . 

Let us define the periodic functions l~(kl:k~) and v(kl*k*) so that the quan- 

titles afk*kl) and ptkatW should be constant. For this it is necessary and 

sufficient to define these quantities by means of Equations (1.5) 

Then the fictiona &kllk.) and V(ki*k*j wfll be defined &8 follows: 

U(kt. ka) = 
s 

@ka, kA _ d’k” b) _ $kL, hfl dt 

v(ki, ki) = 

s 

[pfki, kr) _ B(ktt kd _ ,#k,, kdl dt 

We thus have the result 

a?; = XICrn) (51, J/l) + Xl(m+‘f (21, y1) + f . . + X,(m+Nk(%r ?/l) + 
+ xl(m+N+l) @l, Yl, t) (1 .Q 

y; = Y,‘“‘(%, y1) + Y I(m+f)(21, y1) + . . . + ylfm+Nt (a 311 + 
+ yl(m+N+l) (a, Yl, t) 
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Here m > 2, m + N = N, and Is equal to some arbitrary large number. 

It 1s obvious that the problems on the stability with respect to the verla- 

bles xl, y1 and .r and y are equivalent. In what follows the subscript 

1 In the system (1.6) will be omitted. 

Hence, Llapunov's problem for rational Am/n can be reduced to the prob- 

lem on the stability of the self-contained system with two zero roots If the 

problem on the stability can be solved by means of a finite number of terms 

on the right-hand sides of the system (1.6). This system was considered in 
the papers [2] and [3]. 

In the above papers, there were formulated necessary and sufficient con- 

ditions for the stability of the Integrals of the system (1.6) In slm- 

case the Is solved forms of mth order. 

Let us 

that 

real 

if at 

formulate conditions. If Xc”) Y@) are 

Equation 
p, xyw) - yJp)= 0 

solutions 

a@ + bky = 0 (k = 1, . . .,p) p<m+f 

least on one straight line a@ + bky = 0 the form 

&, = xX@“) + yy@) 

can take on positive values, then the unperturbed motion Is unstable. If, 

however, J?e< 0 on all straight lines then the motion la asymptotically 

stable. 

If Equation F,- 0 has no real solutions different from x - y - 0 , 
the problem on the stability Is solved by the sign of the expression 

g = F,(cose, sin 0) * R”(cose’ sine) d0 
s F. (cos 0, sin 0) 
0 

If o<o, the unperturbed motion Is asymptotically stable; if, however, 

Q>O, It Is unstable. 

The case 0 - 0 ,~ and the case when for Fog 0 the form Rs Is negative 

or may vanish on one or several straight lines, are Indeterminate. The solu- 

tion represents no difficulties when 0 = 0 and It has been completely lnves- 

tlgated in papers [2 and 33 . 

Returning now to the system (1.6), and applying to it the formulated crl- 

terla of stability, we see that Llapunov's problem Is solved In two cases: 

I) when the problem of stability Is solved by forms of the mth order 

Independently of higher order forms, 

2) when the form Fe = xY(m) - yX@) is of a definite sign. 

However, If the form F. Is not of a definite sign and If the form Rod 0 

when F,=O, then the problem on the stability depends on a study of forms 

of higher order than the mth order. 
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2. Stablllty cs’ltrsln lavolv~ forma of the (n + 1) osdor. The vanlsh- 
ing of the forma F. and R0 on the straight lines aks -t_ bky = 0 can occur 

only when the forms XW and Y(‘I’) have the common factor a@ + bky. 

Hence, In the Indeterminatecase Fop 0 and R < 0 , these forms can be 
expressed In the form 

X-(m) z fi (air: + bjy)"j X(m-k) 

i 1 

Y(“‘) = fi (U~T + hj!/)“j Y(‘n-k) (vl + . . . + vp) = k 

j 1 
(2.1) 

Here, Ay(m-k) and Y@'-') are forms of order (m - k) and they do not have 

conunon factors of the type ax + by . 

The functions F,, and R0 will have the from 

RI3 = fi (ajs + bjy)“jR-k (2, $/) (2.2) 
j=l 

F_ k zz ~y(“‘-~’ _ Yx(“-, R_~ = zxWk) + yy(m-k) 

If the common real roots of Equations Xc”‘) (1, X) = 0 and Ycm)(i,x) = 0 

are denoted by Rl,.'., mp , then the common factors 0,x + b,y will have 

the form y + Xj5, (Xj = - aj lhj). 

Let us first study the system (1.6) assuming that In (2.1) 

Y1=Y2=...=Yp=Ir F-tc(Xj)#O (i= 1 ,. .., P) 

We construct for each straight line - g + X,X I 0 t$e function 

Qj= 

y vw(z, y) x (m++, y) - X(m-k) (r, y) ytrn+l) (r, y) ._-- - 
,&m-W _ y_p+k) (2.3) 

The conditions of stability can be formulated In terms of order (m + 1) 

In the following way. 

If on at least one of the straight lines y + XjZ = 0 (I= i9 ’ ’ *t PI 
the function @, takes on a positive value, then the unperturbed motion Is 

unstable. 

If, however, a,< 0 on all straight lines then the unperturbed motion Is 

asymptotically stable. 

Let us assume that q> 0 . Expressing the system (1.6) In the form 

z'= (-- + XIT)X(m-a) + xtrn+l) + . . . 

y’ = (- y + x12) yCrn-‘) + Y@+l) + . . . 

and setting yl= - y + X~CZ , we have 

2’ = ylx!“-” (cc, yr) + qmil) (2, Yl) f . . . 

Y’l zz yJ!m-” (G Yl) + ylrn+‘) (G Yl) + - * l (2.4) 
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m+l mtl (2.4) 
p+Z) 

. 
k=O k=O 

Byt”) = (--I)‘+’ 
k! 

dkytmtz) (1, x1) _ x dkx(“‘+‘) (1, x1) 

dxlk 
1 

dxlk 1 (I = - 2, 1, 2, . . .) 

We note that 

B$'-"= [Ycm-l'(l, x,)- x~X(~')(I, xl)] #o 

Let us transform the system (2.4) by setting 

21 = J: -PY1, p = A$"-"/ B!;-" 

As a result we obtain 

21' = ylx:M-l)(sl, y1) + x:mt1)(51,yl)+ . . . 

Yl’ = YJY @I, Yl) + yimtl) (% z/l) + * * l 

X(m+Z) _ 
1 

_ 2 A~m+Z$.~Z-kY;, yim+f) = ~&m+Ox~l-kY: 

(2.5) 

ALyfl, = 1. dqXim+') @,I) dqYim+') (p, 1) 

d dPq -’ dpq I 1 dqY;m+')(p, 1) , Bc;$ = ; 
dPP 

We note that 

A(m+l) 
0 = (&(I, x1), 

B(m-1) = 
0 - F-I (1, ~11, 

Ao(m-1) = fj 

Without restricting the generallty of the problem, one may set B, (m+O = 0 

for I =l,...,N. If these coefficients are not zero, one can make them 

zero for L < N , by a change of variables 

and the proper choice 

tion the coefficients 

series 

y, = 2 $ u,x> + . . . -j- ajvxr 
of the numbers aa,..., UN . During thl‘s transforma- 

of the forms Xl(m-l) and )Ll(lm+' will not change. The 

y, (XI) = czx; + rsx13 _1- . . . (2.6) 

will satisfy formally the equation derived from the system (2.5) by ellmlna- 

ting the time t . These series are usually divergent. 

As a consequence of the transformation, the system (1.6) takes on the form 

x1’ = 22 (Al(m-1)~1m-2 + . . . + A,(_;-1)~m-2) + Ao(m+l)xln’+l + . . . 

. . . + A&$+l)p+i + 2 .jTJ Hk(m+l)Z.m+Z-kZk 
(2.7) 

I=2 k=o 
03 m+Z 

z’ = z(BO(m-l)xlm-l + . . . + JQJ’;*)~~-~) + 2 2 Ek(““Z)xl”‘+l-kZk 

I=1 k=O 

For this system one can construct functions V and W which satisfy the 
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theorem of Chetaev [4]. Let us set V - x1’+ z*. In the region ~~~-.a~> 0, 

Xl' 0 , we shall have V'> 0 . 

For the function W In Chetaev's theorem, we choose the function 

w = X$h - 22, /I. > 2. The region W > 0 is contained inside the region 

YY'> 0 * It Is easy to see that the sign of W' on the boundary of the 

region W > 0 on which W = 0 is determined by the sign of the expression 
- 2J#"'-l' z25(11~-1) 

II 1 7 whose sign is invariable if x1> 0 . Hence, the 

unperturbed motion described by the system (1.6) is unstable when @,> 0 . 

Above we have considered the straight line - y + x1x - 0 . We can con- 

cider any -other straight line - y + XJX = 0 in an analogous way. 

Let us prove now that if (lgj (.r:, g)< 0 (j = 1, . . ., p), on every line 

six + b,y = 0 then the unperturbed motion is asymptotically stable. 

Transforming the system (1.6) to polar coordinates, we obtain 

r* = rmR_kn (XjCOSO-Si118)+ rmtlRl 
j=l 

P 

t 9 * .) 

8’ = rm-lF_Eu (xi cos0-sin0) + rmFl + . . . 
j=I 

(2.8) 

RI = X(mif) (cos 0, sin 8) cos 8 + YfmtE) (CDS 8, sin 0) sin 8 
Fl Y(““‘) =-k, 2, . . = (cos 0, sin 0) 1, cos 9 - Xtm-lE) (cos 8, 6) 0 (2 s) sin sin 

Let us first consider the case when F-,(1, x) has no real roots. Liapu- 

nov(s function which corresponds to the system (2.8) may be taken Inthe form 

if one defines the function $(fj) by means of Equation 

R_W+~F_~=-fi(e)fi (XjCOSO-Sill8) (2.10) 
j=l 

where h(e 1 is a bounded, continuous, positive and periodic function of 

S with period 2n ; obviously, h(e) cannot vanish for any real valueof 8 

In order to insure the periodicity of $(ef we must impose the following 

condltlon cn h(e) 

The derivative V’ will have the form 

F_kX1 - R-kF, - I:,hr\ (xjcose - sill O,] _1- . . :‘, 
j=l 
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For values of fj different from the values 8,, which are determined by 

Equations I(, cos e - sin g - 0 , the derivative V’ takes only negative 

values. For the values $ = 8*, the signofthe second term, contained in the 

square brackets, colncldes with the sign of the expression 

F-kR,-R-kF, = X(ne")y(m-k) _ y(m+llAr(m-k) 

F_, cosey(m-k)-sine~("-k) 

which is negative by hypothesis. Therefore, v’ is a negative definite func- 

tion of T for arbitrary values of 0 . This implies the asymptotic stabi- 

lity of the unperturbed motion. 

Let us suppose that Equation F_k(l, x) = 0 has real roots different from 

the common real roots of X(m)(l,x)= 0 and Y(m) (1,x) = 0. Let these roots 
have the values )I, (8 = 1, . . . . 9). 

Then Expression 

Rs=R_kfi (x~~osO-sil~8) 
j=i 

~511 be negative for values of 8 determined by Equations W,cos e- ein+O. 

In the opposite case we will have unstable Integral curves. 

Let us now determine the function $(e) In the Interval (0, 2s) , and, 

hence for all real values of e , by means of Equation (2.10). We do this 

in the following wsy: we set $ z 0 in the intervals 

8 Ps - E < 0 <O,, +g. 

For this it is sufficient to define h(8) by means of Equation 

R-k =--h(8)h (xjcosO-gin8) 

j=l 

Such a deflnltlon h(0) is possible because RO< 0 In the Intervals 

8 Pa - E < 8 < O,, +E. On the function h(e) in the interval (0, a) 

we impose the condition 

~~~~~~~ = 0 

which can always be satisfied'if h(0) -h(m) . 

For such a choloe of the function $ , the derivative V’ will be 

negative-definite for real e . Therefore, the unperturbed motion Is asymp- 

totically stable. 

Let us consider the case when Vj > 1 (1 = 1, . . ., p). This can occur 
when Equations xcmt (1,x) = 0 and Y(m) (1,x) =O have common multiple 
real roots. We shall give the conditions for stability in terms of forms 

of the order m+l. 

The unperturbed motion is asymptotically stable for arbitrary v~,...,v~ 

If the forms (2.1) are such that: 

1) the Equation F-,(1, n) = 0 has no roots equal to x1,..., x9 but 

has at least one real root R*; 
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2) the functions @,< 0 on all straight lines y = xjx (j = 1, . . ., p). 

The unperturbed motion Is also asymptotically stable If the equation 

F-,(1, I() - 0 has no real solution but there 1s among the numbers V1,...,Vp 

at least one odd number, and If hereby @,< 0 on all lines y = n,r . 

If y,..., v, are even numbers, and If Equation F-,(1, x) = 0 has no 

real solutions, then the unperturbed motion will be asymptotically stable 

when the Inequality 

ax R_k(cos8, sing) 
F (me, sine) i F_I,(cosg, sin 0) de<o fa @j<O* Y= %jz 

Is valid. 

We note that in the case of even y ,..., b one may assume that the form 

R_,(r,y)< 0 for I/ - x"z . 

The proof of these assertions 1s analogous to the one presented above, 
except for the case when Vl,..., v, are even and Equation F-,(1, x) = 0 

has no real roots. Let us Investigate this case. We take the Llapunov func- 

tion as before. The function $(a) Is determined by Equations 
n 

& + gF_, = - h (0) 11 (xi cos 8 -sinQ2 
i=l 

The condition of 2erlodlclty of the function $(e) takes the form 

This condition Is always satisfied with the corresponding choice of 

h(B) > 0 lf ? 
F-I, 

I 

R-, 

0 

~de<o 

The rest of the proof Is analogous to the case when vl- va- . . . I vp= 1 . 

Next, we consider the case @j > 0, Vj > 2. In the solving of this prob- 

lem we limit ourselves to the case of one multiple root n, (P = 1) . 

In this case the system (2.8) will have the form 

r' = rm(~1~~~~-sin8)Y~ R-,, + rm+lR1 + . . . 

8’ = ~-1 (x1 cos 8 -sin 8)“1F_, + rmF, + . . . 

Let us suppose that the mth order forms determine the nonasymptotlcally 

stable Integral curves and let us take the Llapunov function In Its earlier 

form (2.9). Let y be an odd number. We determine the $(e) by means of 

Equation 
R_,, +gF_,, = h (e) (x1 cos 8 - sin e) 

The function h(e) > 0 la found from the condition of perlodlclty of the 

function q(e) . Then when %> 0 , the derivative V' will be positive 
definite which guarantees the Instability of the unperturbed motion. 

If y la an even number and If Equation F_,, (1,x) =0 has no real 
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roots, then when gl> 0 the unperturbed motion will be unatable if 

The proof of this proposition is analogous to the one given above, 

Following the arguments presented in Section 2, one can study the case 

Yj > 2 in greater detail. because of the particular nature of such sgs- 

terns we shall not dwell on this any longer. 

3. Stability criterlr in terns ot hfg2rer ardor iomns, Let us consider 
the unsettled case when @$- 0 on the straight lines - y + x,x - 0 (J-l,.. 
.*., P,) and takes on negative values on such lines with (,j = P,+ l,...,p) 

( VI= vs= . . . = VP= 1) . 

It Is quite complicated to formulate the criteria of stability on the 

basis of the structure of the right-hand sides of Equations (1.6). There- 

fore, in what follows, we shall give the formulations in reference to the 

system (2.7). 

We note that for any transformation I/,= - g + n,x we shall obtain ays- 

terns analogous to (2.7). Let us assume that in one of these systems $9 0, 

while the first nonvanishing coefficient Hp"' has an index I I Q, < N . 
We USI prove that in case Himta*’ 3 >0 the unperturbed motion is unstable. 

Let us take the Chetaev function in the form V - xla+ a' . The sign of Its 

derivative in the region - zz -/- xx2k > 0, Sl> 0 when 2k-3+ct 

Is determined by the sign of Expression H~miaj)~~+ajil c 1 f which is positive 

when x,> 0 . Hence, VV' will be positive In the selected region. 

?(ktl) In the region where VV’S 0 we take the function W = - z2 -/- 51 . 
The derivative of this function preserves an Invariable sign when w-0. 

This establishes the instability of the unperturbed motion. 

If we find that the coefficients H,f”+=jj <0, on the lines --y+n,r - 0 

(J = l,..., P) on which UJ,= 0 , then the unperturbed motion is asymptoti- 

cally stable. The proof of this proposition is basically the same as the 

proof presented in Section 2, therefore we shall not give it here. 

It may happen that, no matter how large X may be, the nonvanlshlng 

coefficients Him”” have superscripts with L > N . This case Is essentially 

a singular case, and If it is possible to establish this for some one of the 

lines --I/+x$x'o, then the series (2.6) will be convergent and it will 

represent a root of Equation 

YIY @-l) (Xl, y1) + Y m+‘) (Xl, y1) + . . . = 0 
With the substitution y, == 2 + c2xp + cgx13 + I . * the system (2.5) 

can be reduced to the form 

x1’ = 2 [Xlfm-‘) (Xl, 2) + X*(m+l) (x1, 2) + xJrn2) (x1, 2) + . . .] 

z’= 2 [Y,(n2-1yx1, 2) + Y*(m+l) (x1, 2) + Y*(m+a)(xl, z) + l * .] 
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This system can be investigated in an analogous nay taking into account 

that I I 0 is a singular llne. 

We note that if the form F_, isof a definite sign, the integrals of this 

system are always stable, but they are not asymptotically stable. 

4, IavorZl*~Ma ot WM ODE0 Xfmf (&Xl) = 0, Y@*) (i,q) = 0, 
If’-kf~,%l)= 0. Let us consider the case when the common real root of Equa- 
tions Xfm) (1, x1) =: 0, Ytrn) (1, x1) = 0 is also a root of Equation 
F-1 (1,x,) =O. Thls case, because of Its particular nature, will not be 

investigated In all of its details here. We shall restrict ourselves to the 

assumption that the common real root of 

Frn)(l ( xx)= 0, Y@f (I, X~) = 0, F-f, (1, Xl> = 0 

la not a root of Equations 

ytrn+') (1, x)-- ?CX(m+l)(l, x) = 0, 

3X'm"1'(1,x)- '[ dx 

(jy(rn-1) (1, x) _ x d.dm-‘) (I I x) 

dx = 1 0 
We ah811 prove that the integrals of the system of equations (1.6) are 

alWQVi IXiSt8ble under these assumptions. 

Setting yx- - y + nix in the system, we obtain the system (2.4) inwhioh 

~!~-l)=~,A!~-'~ #O. Equation A!:'-"' =() may hold In case Ye>, 2. 

Elim%nating dt in the system (2,4),we obtain Equation 

dyt y12 ( B*~m-1)zm-2 + . . . + B*;y_;l’ylm-2) + B*(nm+l),m+l + . I . 

dz = y1 (Al~m-tkp-l + . f . + A (m-1) m-1 
*m_t Yl 1 +Lq+lzm+L -I- * f * 

(44 

By me8ns of the substltutlon $I, = [z(z) ffi] $,a this equation can be 

reduced to the form 

'L: $ = 62$-~ip1(~, 2) +-33cpa(s, z) 

if the number h la determIned by means of Equation 

[S/zA,(m-l~_~BIIJ"-')]h2 = ~$s1' 

(4.2) 

A real solution for h can be obtained when the sign of the difference 

standing In the square brackets coincides with the sign of @r". This Can 

be accomplished for any system by repalcing .z by -x In Case m is even, 

and by repaloing x by - x and y by - y if m ie odd, 

It Is easy to show that Bquatlon (4.2), with b not equal to 8 positive 

integer, has the holomorphic integral 

z(x) = 5 CkXk + x*11 2 DkXk (4.3) 
k==l. k=i 

s~~~t~~~et~~~~~~ y1 = iz (xl +h) ST?* in the flrst equation of the 

a% 
a”=== 

Al\mS1)&"r+"I* +. p-f (x, $/2) (44 
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If we select the number h. so that A$‘-“h Is 
from (4.4) that the unperturbed motion Is unstable. 

tlve Integer the Integral (4.3) Is holomorphlc with 

rlnr. The derivations are the same as before. 

cases 1249 

positive, then It follows 

In case b is a posi- 

respect to X, x 4 and 

In conclusion we shall consider the case F, f 0. This Identity can 

exist only when X(flO I .XW-1) (J., y), 1.W) F ?JXW-') (5, rJ). If the form 

xc+1) (5, g) can take on positive values then the unperturbed motion is 

unstable since R = (2' + y2) S(tn-J) (5, y)., 

Therefore, stability can exist when the form 

definite, or If It Is represented as 
P 

X”‘‘-l’ (Z, y) = -rI (C2j.X + 

X(m-1) (5, 9) Is negatlve- 

bj?J)"'j 

j=l 

This case has been treated by us already. 

If xcm-1) (z, y) Is negative-definite, then the unperturbed motion will 

be asymptotically stable Independently of any forms of higher order, For 

this type of systems, Llapunov's function can be taken In the form V-g+ bp. 

The contents of Sections 2 to 4 solve Llapunov's problem In more general 

cases. 

5. aataonloal ryrtrllu. As an application, let us Investigate the oscll- 
latlons of a HamIltonIan system with the function 

H = ; @2 + Y2) + ; [(a&O)9 + a(2&2y + u(l92).ry2 + a@~+/2 + 

where 

+ Ht4’ (x, y, z) + . . .] (5.1) 

a(4*M = x (&,(tg kz) CoS nr + T,,(klg kz) Sin nr), H(') = 2 &, Mph'@: 

kl+kr=l 

a’k,, kr) (k,, kd 
n , 

rn are real constants. 

Special cases of this problem were treated In the papers of Levi-Clvita 

[5J, Siegel [61 and Merman CT]. 

A system of equations with Hamilton's function of the type (5.1) can be 

represented In the form 

d .=I - ay - ~(Z,lL$ - 2uus2)ay - 3am)y2 - i?H(O’ (2, y, t) ay - . . . 

ZJ’ = S(J: + 3&W’)s2 + 2&+q $- uU>2)y2~+ aH(“) (2, y, t) 
(t = fit) (5.2) 

a3: + . . . 

Transforming this system In accordance with Section 1, we obtain (5.3) 
x1’ = c&(2*0) x,2 $ a(‘*‘) r,y, -1 oP,2’ y,Z +x,3 (21, yJ + . . . + P’ (% YJ + 

+ x~N+I) 
(% Yl, t> + . * *, 

Yl l = /Y2*“) Xl2 + p 51y, + p(“*2) y12 + Y13 (51, yJ + . . . + Yp (q, y,) + 
+ yiN+l) 

(51, Y,, t) + * - * 
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The constants akl*kz and p"1*k2 (h-, -j-k2 := 2) will satisfy the conditions 

fi(l.1) = - 2&+0) (x(1,1) = - 2/3(0,", 

~(2,O) =ye (-3yy’b’ + 3$0’ 
(5.4) 

_ 3r~‘2’ _f_ rjllz) _ 6(12’1) _ 36~“’ _ 36~‘~’ + 36~3)) 

pl,Z) = I/* (_ 36y’ +3@0 _ Q2) _ 3@.2’ _ #J’ +3#‘) _ 3rl”‘3’ _ 3$.S’) 

&,2) = 3/e (3#0’ _ rf’“’ + rl”2’ + r;‘2’ _ @” + ,y) _ 3@3’ _ go’“‘) 

f&2,0, = 3/3 (_ ,y _ 3($3,0’ _ @.2) + ,p _ ry’ _ p _ 3rp3’ + rp3’) 

In view of the canonical systems (5.2). 

In accordance with the criteria of stability with respect to forms of the 

mth order, the Integrals of the system (5.3) for X(l) =Y(')z~0(2>3) can 

be stable, In general, If 

I) (k,+ kz = 2) 

2) the forms of the second order have a common factor of the form 

cx + by , and the form F,(r, v) Is of a definite sign. 

In all other cases the motion Is unstable. It Is easy to prove that for 

the canonical systems the second case can not occur because of conditions 
~(1~1) = _ ~(2~0) and ~(1.1) C _ 2fl(0*2), 

The first case can arise when g > 3 or when the conditions (5.4) lead 
to ol(k,,kz) = p&k,) = 0 for nonvanishing 6$k"k", ?'I , (k,, JG @.“’ md ,&hW 

In this case the problem of stability can be solved by means of forms of 

higher order. Let us assume that the lowest forms, that are not Identically 

zero, are X@") and Y@). Then stability with respect to mth order forms 

can occur only in two cases: 

I) the form RO= 0 when Fe (y, X) - 0 ; 

2) the function F,(r, v) Is sign-definite, and 

The case R, < 0 with F, (2, y) = 0 and the case g < 0 for the canon- 

ical system, can not occur because It leads to asymptotically stable inte- 

grala, which contradicts 

If, however, the form 

and also If 0 > 0 with 

motion Is unstable. 

Llouvllle's theorem. 

I),, with Fo(x, v) - 0 , takes on positive values, 

a sign-definite F'c((x, I/) , then the unperturbed 

For the Investigation of the cases 1 and 2 It la necessary to consider 

higher order forms. Let us consider forms of the m + 1 order. 

Applying the stability criterion, one can prove that for canonical systems 

In case 1, the stability la possible only when the functions @, vanish If 

&((x, V) - 0 . In the opposite case we obtain only lnstablllty since the 

case od asymptotic stability can not occur for canonical systems. One 

reaches the same conclusion considering the case 2. 
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Investigating forma of order higher than mil , for example forma of the 

m + k order, we arrive at similar conclusions, i.e. we will obtain either 

Instability or we get the indeterminate case when the problem of stability 

is not solved by forms of order m+k , Thus, just as for rational X so 

also for irratlonal 1 , stablllty can occur oxfly In very special cases. 

6, ~~~stwns of h%@er order. Let us consider the system (0.1) and let us 
assume that all X, are irrational and that they do not satisfy any relations 
of the form 

j1 @Q% = 0 f* 2 /m,/<N (A) 

where the m, are integers. 

Setting zQ = rs + iysr Z, = xs - iys, we obtain 

‘4,**(t) = A,+* (z + 25c) (h + - - - +kp+nl+ ... +np>2) 

Here, and in the sequel, an asterisk indicates a superscript (kl...., k*) 
while two asterisks indicate the superscripts (k, . . . . kp, n,, . .., np ). 

Passing to the variables C, and r, 

5, = z* + &,** (T) ZikS 0 . . ZPkP@ . . . ZP% 

t*= ia+ ~~~**(r)Z1k~...Zp*PZlnl *..+I 
(f=) 

we determlne the functions U:*(T) and C*(T) so that on the right-hand side 
of the transformed system r does not appear explicitly in the 8? + 1 
first forms. 

Such a determination of the functions U:“(T) and a;‘“(T) is always pos- 
sible, whereby these functions are continuous and periodic of period 2n . 
As 8 result we obtafn 

In this 8 stem the- C;” 
E 

are constants and the P, holomorphic functions 
o$ +6’2 and whose expansions do not contain terms of order less than 

The coefficients of these expansions will be continuous and perlo- 
dlc fun&Ions In T of period & . 
large. 

The number N may be taken sufficiently 

Setting 6, = E, + ins, C,* = a,* + i&* 

-9s k,+, . Tk >1 P,’ W + ‘11’)“’ * . . (f,’ + ‘I$~ + K, (El, . . ., E,, rll, . . ., n,, r) 
P-- 

(6.3) 
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(3 5 kl + . ’ - f k, -sg N, s = 1, . . *, p) 

In those c&see when the problem of stabillt 
of terms on the right-hand parts of Equations 

is solved by a finite number 

96.9) the inveetigatlon of 
the stability of its integrals reducea to the problim on the stability of 
systems of the pth order with p zero roots, which la represented by the 
firet group of equatlone OS this system. This 0886 w8e treated In 181. 

Let UR now consider the C8se of rational 
integers), 

k3 = a*i 1 PSI @%l~ BSI are poaitlve 
Let the number B be the loweat multiple of all the @,1 . Set- 

ting T - gt , end pasuing to the variables $, and n, by means of Formulas 

Let ua determine the functions U, and o, so that in the transformed 
system the R tlrat forma should have conat8nt Coefficients. 

Such 8 determination of’ the hunctlone U, and U, is alw8ye possible. 
a result we obtain 

As 

(?n>Z, s=1,...,p) (6.7) 
Thue the lnveetigatlon of the system (6.1) for rational X, can be reduced 

to eystemt3 of 2p equations with 2P zero rootaj whereby the forms _I$) 
and Y$’ for I < m + N can have any constant coefflclenta. 

Note .I. 

Note LL8punov's problem, and the problem of? &ability in the 
Case of p pks of pure imaginary roots are considered here only for the 
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case of critical variables. It Is easy to prove that the results remain 
valid also for the more general case when the system (6.1) has also n roots 
with negative real parts In addition to p pairs of pure Imaginary roots. 

We note that the problem of stability In case of Irrational A, permits 
considerable slmpllflcatlon In the general case, and that it can be reduced, 
when p - 1 , to the Investigation of one equation which Is obtained from 
(6.3) by t;e_czqelnof variables E = rcos8,q1 = r sin0. !Phls equation has 
the form ' The number ~(~'1 corresponds to a number U 
which appears In Liap&ov's method [I] When the A, are rational, the prob- 
lem becomes considerably more compllcaied. The complications do not dlsap- 
pear (as can be seen In Sections 2 to 4) even If P = 1 since the lnvestl- 
gatlon of the system (1.6) involves many difficulties. 

While it was possible to formulate necessary and sufficient conditions 
for stability (in terms of forms of the second order) for second order sys- 
tems (1.6) and while we could analyze more general cases for stability with 
respect to forms of higher order, It Is not possible to find such general 
condition for stability or InstabIlIty for systems of the type (6.7). 

One criterion of Instability with respect to mth order forms for the 
system (6.7) was obtained by the author In the paper C83. We shall give It 
here. 

If the system of equations 

X s’ = X,(m) (x1. . . .,Xn)S X,(m+‘+Xl,. . .,x,)+.” (s = 1, 2,. . .) n) (6.8) 

Is such that the forms 
F sk = x&“‘) - z~A’~(~‘) 

with any fixed k and for s=l,2... k - 1, k + i, . . ., have real solu- 
tions different from 51= 52=...= z IL = 0, and if the form 

R= 5 xsX,(m) (Xl, . . ., xn) 
s=1 

with F,,= 0 , can take on positive values, then the unperturbed motion Is 
unstable. 

Therefore, In the presence of real roots of the system of equations 
F Sk'0 t stability can occur only when for all values of x1,..., x., satls- 
Pylng the condition F,r= 0 , the expression R GO. 

In case the X, are Irrational, the system (6.1) can be reduced to the 
system (6.4) in which the forms x@") 
take on the form S are such that the equations FIL- 0 

Fsk = rGrk (R,(m-l) - Rkfm-‘)) = 0 

&F+l) = x ,przk, 1 . . . rikP 
(2kl -I 2h+ . ..+2k.=m-1) 

System of these equations always has real solutions different from 
r-I= r2= . . = P,- 0 . 

In case the X, are rational, there will always exist such solutions when 
m is even. If m 1s odd, the system of equations F,r= 0 may have no 
real solutions besides x1- X2' . . . -x,= 0 . 

From the given criterion for Instability with respect to mth order forms 
It follows that the forms F.l, and I) play a very Important role in problems 
of stability of the integrals of the system (6 8). 

Therefore, It Is of Interest to obtain a new form of the equations of the 
perturbed motion whose right-hand sides would contain the forms F,t and R 
directly. 

TJ 

For this pur ose 
x,= ry, ,s = l,;?,..., n P 

let us transform the system (6.8) by setting 
. 

+ x.a= . 
Suppose that kla+...+ I/~'- 1. Then x1'+...+ 

Dlfferentlatlng the last equation with respect to t and determlnlng the 
derivatives of pl,..., y. with respect to t by means of (6.8), we obtain 
a new system of the form 
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dys 
-_=r 
dt 

m--l (y&(O) + yaF,,(O) + * f - + ynF,,fO)) + rm i y,F,,“) + . . . 
h‘.zl 

(s = 1, . . .) II) (6.9) 

ilYS2 = 11 R, = 5 yJX,(m.+f)(~l,~2...,y,) (1 = 0, 1, 2, . . . ) 
L=l 

F,p = Y&m+zf (YIP f f ., y,) - Y,xp+“) (Yl, . . *, y,J 

We note that 

F 8s (If s 0, F,$“) zz - F,,(l) 

Let us now rewrite the first group of Equations (6.4) in the form 

rs = ,8R,(m--I) +. F&(~+~) + . . . 
c 
R 6 (I) = 2 a,% 

Setting 
zJh+-+2kp=~ 

2% . . . ,;c) 

l@ * = r&J,, zg = F&2, p=rZ= $J rsat m=2k+1 
S=l 

and taking Into account that 

we obtain 
F sk = ‘ark (R, - R,) = r,rkRsk 

dP 
dt = 2pk+1%(Q,* 1 ., zp)+ 2p k+z Rr (21, ..,, zp)+ *** 

s=l 

dz, _ 

,*,*,P 

- zp*z, @I& to) + zaR$‘) + . . . fz, R,,fo’)+ .a. 
zl+*.*+z,=f (6.10) 

dt 

Llapunov’s function for the system (6.10) may be taken In the form 
V = peeNu, where u Is a continuous bounded function of a,, . . ., 2, . The 
derlvatlve of this function with respect to t will have the form 

because of Equations (6.10). 

If It should happen that the function u can be found from Equations 

Lh 
- - ; = R,i”‘P,, 
% b 

where P, k are poaltlve continuous bounded functions different from zero or 
oonstants, then 

v’ = ~Pg+l~-Nu [ % - &‘u’z: P,, (R~~‘)}~ zszxl j- . ’ - 

Let UE assume that such a function u has been found. Then the neces- 
aaymptotlc stability with respect to the mth order forms 

~~$~%~i3~;~~p= 0) are also sufficient. Let us oonflne ourselves to 
-2, i.e. when (6.1) Is a system of the fourth order. 

In this case the function u Is determlned by Equation 

au & = &,(o) &(O) = 
Za 

(ki, k,) h, k, 
a% --C& 3 

21 22 Ik = kl+ W 

k 
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Making the substitution, we determine all the coefficients A(klSkx’ in 
terms of the coefficients .(k~~kz). 

Returning to the derivative V’ whlvh, for P I 2 , has the form 

V’ = +~+re-Nu [& - N @z(O))” ilzz] + . . . 

we come to the conclusion that if the form Ao<O for F,, = zlz&$ = 0 then 
the unperturbed motlon is as~ptotically stable. This result was obta&ed 
in 181. Considering forms of higher order and selecting the function 

V = pe-Nwt + pZ@ + . . . + +wa 

one can obtain criteria of stability in forms of order higher than the mth. 
We shall, however, not concern ourselves with these questions. We note that 
the new form of the equations of the unperturbed motion of the kind (6.9 
which makes It easier to construct Llapunov’s functlone for the system ( I! 

, 

does not eliminate all dlfflcultles related to their constructions If 
.8), 

w 
In these cases one can encounter quite serious difficulties. 

7. Maal S~SCamS. Sup ose that the system of equations (6.7) is 
obtained from the system (0.1 P under the assumption that Its Hamiltonian 
function has the form 

Here, 

?I=_0 

6% + kz + . ..j_k.+nl+ne+.-.+np=2) 
In spite of the special nature of the right-hand sides of the obtained 

system, the Investigation of thla system is very difficult. The fact Is that 
the canonical systems belong to those special systems for which the stability 
problem can not be solved by a finite number of forms of the right-hand sides 
of the systems (6.4j and (6.7). Even though these systems contain N first 
forms with coefficients Independent of time, this circumstance does not sim- 
plify the study of the problem because these forms may determine either 
Instability or nonasymptotic stability. If however, one sets P - = , then 
one can obtain a self-contained system for forms of any order, and the solu- 
tion of the problem resents no such difficulties if the tr~sfor~tlon 
series (6.2) and (6.8) are convergent. But these series will diverge in 
general, and the investigation of their convergence properties Presents great 
difficulties even when p - 1 . 

Avoiding the dlfflcultles connected with the lnvestigatlon of the stabi- 
lity of these systems, let us consider those canonical systems In which the 
Instability of the unperturbed motion can be revealed by a consideration of 
the N first forma of the right-hand sides of the system of the perturbed 
motion. Hereby it is necessary to restrict the lnvestlgatlon to rational X, 
since for irrational X, the unperturbed motion will be stable no matter how 
large the finite number K needs to be chosen. 

and 
Let us assume that as a result of the transformation the powest forms Xi” 

Yj’), which appear in the system (6.7) have the index d = 2 . 

We consider the system of algebraic equations (7.2) 

X,(*) (hl, . . ., A,_,, 1, &+I’ . . ., h,, PI, CL%, * * -V ,‘$) = ’ (& = X8 /‘k’ & = II, ! $1 

y,(2)(hl ,.,., h,_,,kk,+, ,..., hp&1,~2~-+,)=~ (s=if..*SP) 

and the system of equations 
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(s = I, . .) p) 

For each value of k we shall have two systems of equations of order 2p 
with 2p - 1 unknowns. If for any fixed index k at least one of these 
systems does not have real roots, then the unperturbed motion, determined by 
Hamilton's function (7.1), Is unstable. 

Tf these systems have common roots for arbitrary values of k , but the 
equations F,,- 0 , constructed for the system (6. 
from the common roots of the system (7.2) and (7.3 3 

), have roots different 
, then the unperturbed 

motion Is also unstable. 

If it happens that the forms Xs(') and Y'," for 1 = 2, 3,. RX - 1 vanish 
identically, and the forms X('") and Yc!') are different from '2&o, then, 
applying the criteria of inst&bllity 20 this kind of systems, we obtain 
analogous results for even m . 

If m is odd, one has to consider a system of 
tions F,,- 0 In 2p - 1 unknowns. If it happens 

2~h;tlfo;l&~;" ;r- 

system of equations has real solutions, and that for F,,- 0 the form 

xo=zz.x (m)+Zy,Y,(m) b s 

can take on positive values, then the unperturbed motion Is unstable. 
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